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Preface

The Final Report consists of two parts. Part 1 is a Technical Summary of the Phase II
effort describing the background, technical innovations, and technical

accomplishments. Part 2 records the technical objectives, approachs, and results for
each task listed in the Statement of Work in the Phase II Proposal. Each section or
subsection is numbered in accordance with the corresponding task in the original
Statement of Work A complete bibliography of reference articles, books and patents is
included in Part 2.

This work was directed by Principal Investigator Robert E. Slocum. Measurement and
instrumentation work was performed by Dmetro Andrychuk. Sample preparation and
silver deposition work was performed by Fred Browning. - - -
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PART 1: TECHNICAL SUMMARY

ABSTRACT

A light polarizing material was developed for wavelengths in the visible and near-

infrared spectral band (400 nm to 3,000 nm). The material is comprised of ellipsoidal

silver particles uniformly distributed and aligned on the surface of an optical material.

A method is set forth for making polarizing material by evaporatively coating a smooth

glass surface with ellipsoidal silver particles. The wavelength of peak absorption is

chosen by selecting the aspect ratio of the ellipsoidal metal particles and the refractive

index of the material surrounding the metal particles. The wavelength of peak

absorption can be selected to fall at a desired wavelength in the range from 400 nm to

3,000 nm by control of the deposition process. This method is demonstrated by

evaporative deposition of silver particles directly on to a smooth optical surface. By

applying a multilayer silver coating on a glass disc, a contrast of greater than 40,000 was

achieved at 590 nm. A polarizing filter was designed, fabricated and assembled which

achieved contrast of 100,000 at 590 nm and can serve as a replacement for crystal

polarizers.

1. BACKGROUND

Sheet polarizers were developed to replace crystal beam-splitter polarizers which are

expensive, bulky and of limited size. The art of sheet polarizer material is well known

dating from Land's invention of the H-sheet dichroic polarizer in 1938. Production of

plastic polarizing materials in sheet form is a two step process. First, a suspension

medium containing long chain molecules is stretched to align those long chain

molecules. Second, polarizing dichroic molecules are added to the medium or included

in the medium and attach themselves so as to orient along the aligned chain molecules.

The light polarizing particles may also first disperse in the medium and align by

extruding, rolling or stretching the medium. For space applications the plastic polarizer

is not robust and degrades in the space environment. Crystal polarizers are relatively

long and increase the optical path and increase the size of space instruments.



Although the major portion of sheet polarizer material marketed commercially has been

the organic plastic material type, Coming has performed research on high performance

polarizers for ophthalmic applications where high surface hardness and good scratch

resistance are desired. Polarizing glasses have been prepared where ellipsoidal metallic

particles dissolved in the glass comprise the polarizing material. The polarizing action

is based on the fact that the ellipsoidal metal particle absorbs light polarized along the

long axis and transmits light polarized perpendicular to the long axis.

Three methods for making polarizing glass have been disclosed in recent patent

literature. U.S. Pat. Nos. 4,125,404 and 4,125,405 disclose a polarizing action in

photochromic glasses containing silver halides which are darkened with actinic

radiation in the range 350 nm to 410 nm and bleached with linearly polarized bleaching

light. U.S. Pat. Nos. 3,653,863 and 4,282,022 disclose the manufacture of highly

polarizing glasses starting with glass which is phase separable or photochromic and

contains a silver halide which is heat treated-to form silver halide particles of the

desired size. The glass is then subjected to a two step process. First, the glass is heated

at an elevated temperature between the annealing point and the melting point (500 to

600 C) followed by stretching, extruding or rolling the glass containing the silver halide

particles to elongate them and orient the particles to an ellipsoidal shape. Second, the

glass is subjected to irradiation by actinic radiation to produce silver metal on the

surface of the silver halide particles. An improvement of the second step is disclosed in

U.S. Patent No. 4,304,584 where the extruded glass is heat treated in a reducing

environment at temperatures below the annealing point of the glass in order to produce

elongated metallic silver in the glass or on the silver halide particles in a surface layer of

the glass at least ten microns thick. It includes the practice of making composite glass

bodies where polarizing and photochromic glass layers are combined and laminated.

A further improvement is disclosed in U.S. Pat. No. 4,479,584 for making effective

polarizing glasses for the near infrared spectral region described as 700 nm to 3000 nm

by improved glass drawing and high temperature reduction techniques. U.S. Pat. No.

4,486,213 describes the cladding of a core polarizing glass with a skin glass in order to

achieve high aspect ratios for the elongated metal particles. U.S. Pat. No. 4,908,054

disclosed methods for improving the contrast and the bandwidth of polarization action

for the product described in U.S. Patent. No. 4,479,584.



A third class of polarizers are Hertzian polarizers which place metal wires on the

surface of a transparent optical material. Prior to 1900 Hertz demonstrated his method

for polarizing radiation using an array of parallel reflective wires which were long

compared to the wavelength of the radiation to be polarized and were separated by a

distance much less than the wavelength to be polarized. The Hertzian polarizer is often

configured as a grid of wires but can also be irregularly spaced wires which meet the

polarization conditions. The Hertzian polarizer transmits the radiation with electrical

vector perpendicular to the wires and reflects radiation with electrical vector parallel to

the wires.

U.S. Pat. No. 3,046,839 discribes a method of manufacturing a Hertzian polarizer on the

surface of an optical material by first forming a diffraction grating on the surface. The

diffraction grating consists of grooves and the groove tips are evaporatively coated with

metal to form an array of metal filaments. U.S. Pat. No. 3,353,895 discribes a method of

manufacturing a Hertzian polarizer material by forming metal filaments using an

evaporative shadowing method. Evaporated metal is directed near the grazing angle

toward a bumpy transparent material covered regularly with protuberances. Metal

filaments of a Hertzian polarizer are produced by forming filaments which lie along

side the protuberances and are separated by the shadows cast by the protuberances.

U.S. Pat. Nos. 3,969,545 and 4,049,338 discribe a Hertzian polarizer comprised of

filaments of metal which are evaporatively deposited on smooth surfaces of transparent

optical material. The metal elements of the Hertzian polarizer are silver whiskers grown

on the surface by grazing angle vacuum deposition of silver.

Each of the three classes of sheet polarizer has characteristics which prevent the

realization of the goal of a high performance polarizing material suitable for both the

visible and near-infrared spectral region (400 nm to 3,000 nm). The plastic sheet

polarizer has poor performance in the near-infrared spectral region and is easily

damaged because of the softness of plastic. The Hertzian polarizers applied to optically

transparent materials reflects rather that absorbs the unwanted polarization

components of radiation which is particularly undesirable for ophthalmic and display

applications. The Hertzian method, although successfully applied to the near-infrared

spectral region, has not been effectively extended to the visible portion of the spectrum

because of the difficulty of producing a uniform density of metal filaments spaced at



separations much less than the wavelength of light. Finally the polarizing glass method

is limited to glasses which are highly specialized compositions containing silver.

Although the polarizing glasses marketed by Corning under the trademark Polacor are

effective near-infrared polarizers, the original goal of manufacturing ophthalmic quality

glass for use in quality and prescription sunglasses has not been met. This unmet goal is

due to the complexity and difficulty of the shaping and heating of specialty glasses and

failure to control the shape and uniformity of the polarizing metal particles for the

visible spectral region. We obtained two samples from Corning for evaluation and

observed contrast greater than 500 at 590 nm. Unfortunately, Polacor samples for visible

light are no longer available for loan or sale.

2. TECHNICAL OBJECTIVE

The anisotropic polarization dependence of the optical absorbance of spheroidal metal

particles is well known from such texts as van de Hulst and the suspension of such

particles in glass (Corning) or plastics (Land). The properties of spheroidal metal

particles on flat surfaces has been investigated by practioners of Surfaced Enhanced

Ramann Scattering (SERS). Scientific investigators have observed weak polarization

effects in metal thin films. The novel material to be described here places the metal

particles on the surface of a transparent optical material in such a way as to achieve

significant anisotropic absorption of light with large absorbance of the polarization

component vibrating parallel to the alignment axis and large transmission of the

component vibrating perpendicular to alignment axis so as to make the material useful

as a polarizer. We have demonstrated a process for selecting the particle volume and

aspect ratio to effectly tune the wavelength of peak polarization of the material to the

desired wavelength in the range covering 450 nm to 3000 nm.

The object of the present effort is to provide a sheet polarizer with excellent contrast

over the visible to near infrared spectral region and achieve contrast greater than 10 s at

590 nm. The light polarizing material can be applied to a smooth surface by forming a

coating of aligned ellipsoidal silver particles on that surface. The array of silver particles

transmits the desired polarization component and absorbs the unwanted component of

polarization. The array of silver particles is formed on a smooth transparent surface by

evaporative deposition in a vacuum system. The wavelength of peak polarization can



be selected by the choosing the aspect ratio of the ellipsoidal metal particles and the

refractive index of the material surrounding the ellipsoidal metal particles. Heat

treatment of the evaporated metal particles can be used to enhance the contrast in the

visible spectra region where small aspect ratios (length to width ratios of 5) are required

to peak the polarization effect.

3. DESCRIPTION OF SILVER FILM POLARIZER

We report here investigations of methods of making polarizing material by covering the

surface of an optical material with ellipsoidal silver particles which are aligned. The

light polarization component parallel the alignment direction (absorbed) and the

polarization component perpendicular to the alignment direction (transmitted) are

measured. The wavelength of peak polarization, determined by the length-to-width

ratio (aspect ratio) of the ellipsoidal metal particles and the refractive index of

transparent material surrounding the metal particles, was set at 590 nm. A light

polarizing, single layer material was demonstrated which has contrast greater than

1,000 for wavelength in the visible and near-infrared spectral band. The material is

comprised of ellipsoidal silver particles uniformly distributed and aligned on the

surface of an optical material. An analytical model was developed which predicts the

polarization effect in an array of aligned ellipsoidal particles. The theoretical predictions

for absorption along the particle long axis is shown in Figure 1-a and absorption

perpendicular to the long axis is shown in Figure 1-b for a film with contrast of 1000 at

600 rim. An eight layer coat on a single substrate produced a contrast of greater than

40,000. A multi-substrate combination was assembled and tested with contrast greater

than 300,000. The polarizing filter delivered to JPL for evaluation has a contrast of

100,000.

A variety of methods were investigated for making polarizing material by

evaporatively coating a smooth glass surface with multiple layers of ellipsoidal silver

particles. The wavelength of peak absorption can be selected to fall at a desired

wavelength in the range from 400 nm to 3,000 nm by control of the deposition process.

This method is demonstrated by evaporative deposition of metal particles directly on to

a smooth optical surface and locating the wavelength of peak absorption by variation of

9
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the multilayer deposition process. For silver particles in air, the ratio of particle width-

to-length ratio of 0.2 sets the wavelength of peak absorption at 600 nm.

4. FABRICATION OF POLARIZING FILMS AND FILTERS

The transparent optical element selected for the substrate of the polarizing material is a

25 mm diameter disc of BK-7 glass which has been polished to an optical quality,

microscopically smooth finish. The method of application of a coating of ellipsoidal

metal particles to the surface of the glass disc is evaporative vacuum deposition by

means of the apparatus shown in Fig. 2. The unique feature of the deposition technique

is the impinging of the evaporated metal on the glass surface at an angle near the

grazing angle (greater than 85 degrees to the normal to the glass disc surface).

The glass disc is mounted to a substrate holder and positioned at the correct angle to

the metal deposition beam at a distance of 20 cm from the deposition source inside a

bell jar. The substrate holder is designed so that the part can be rotated 180 degrees

about the normal to the disc at the center of the disc. Position 1 will refer to the

alignment of the glass disc is at 0 degrees between the direction of impinging metal

vapor stream and an axis on the substrate surface as shown in Fig. 2. Position 2 will

refer to alignment of the part when rotated 180 degrees from position 1 about an axis in

the center of the substrate normal to the surface. The glass surface is cleaned with

alcohol before mounting in the vacuum chamber.

The metal to be vapor deposited is placed in a resistance heating element which in turn

is connected to a source of current. Before activating the current source the vacuum

chamber is evacuated to a pressure less than 0.00001 torr using known techniques.

When the deposition process is activated, metal atoms adhere to the surface and form

an elliptical shape particle with the long axis of the ellipsoid aligned with the direction

of the evaporated metal beam. The metal of choice is pure silver. The samples described

here were prepared by evaporating 0.125 cc of silver, but only a small faction of the

silver actually is deposited on the surface of an individual glass disc.

The investigation of thin metal films on surfaces has been an active field of research

through out this century. A variety of deposition techniques have been developed for

11
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preparing island film of disconnected metal particle with shapes which are spherical,

eUipsoidal and in the shape of whiskers. We have devised a novel method for

preparation of silver metal particles which exhibit the distinctive polarization behavior

of prolate metal spheroids as observed in polarizing glasses (component parallel

alignment axis absorbed).

In addition this process is unique in providing a process control method for selecting

the wavelength of peak polarization by causing the evaporated metal to impinge on the

glass surface in a specific sequence of impingement directions with a specific fraction of

silver arriving at the surface in each sequence. This physically selects the effective

length-to-width ratio of the ellipsoidal particles which determines the wavelength of

peak polarization. The wavelength of peak absorption can be shifted to longer

wavelength by increasing the refractive index of the medium which surrounds the

particles. The metal particles deposited directly on the surface of the glass are

effectively surrounded by air with a refractive index of 1.0. The refractive index can be

increased by evaporatively or chemically coating the glass with a higher index material.

This method of wavelength selection is demonstrated here by the application of an

optical adhesive with refractive index of 1.5.

EXAMPLE 1

The first example divides the deposition into two parts so that half of the silver is

deposited in position 1 and half of the silver is deposited in position 2. Peak

polarization occurs at 950 nm with particle transmittances k 1 = .68 and k 2 = .0047. The

contrast is 145.

EXAMPLE 2

The second example divides the deposition into four parts so that half the silver is

deposited in position 1 and half of the silver is deposited in position 2. Four depositions

were made in the position order 1, 2, 1, 2. Peak polarization occurs at 700 nm with

principle transmittances k I = .64 and k 2 = .0045. The contrast is 142.

13



EXAMPLE 3

The third example divides the deposition into 6 parts so that one half of the silver is

deposited in position 1 and on half of the silver is deposition in position 2. Six

depositions were made in the position order 1, 2, 1, 2, 1, 2. Peak polarization occurs at

600 nm with principle transmittances k 1 = .58 and k2 = .014. The contrast is 42.

EXAMPLE 4

The fourth sample was made by dividing the silver into eight parts so that half of the

silver is deposited in position 1 and half of the silver is deposited in position 2. Eight

depositions were made in the position order 1, 2, 1, 2, 1, 2, 1, 2. Peak polarization occurs

at 575 nm with principle transmittances k 1 = .52, k 2 = .0036 and contrast of 145.

EXAMPLE 5

The fifth sample was made following the process of Example 2. Following completion

of the deposition process, the surface of the metal film was coated with optical adhesive

which has an index of refraction of 1.50. The wavelength of peak absorption shift from

800 nm to 1200 nm. This illustrates the analytical prediction stating that the wavelength

of peak polarization will be proportional to the index of refraction of the material

surrounding the spheroidal metal particles.

EXAMPLE 6

The sixth sample was prepared by the method of Example 3 with the following

modification in the preparation of the substrate in order to improve the polarizing

characteristics of the material at 600 nm. The substrate was first coated with silver and

heat treated prior to application of the method of Example 3. The substrate was coated

by the method of Example 1 using 0.025 cc of silver for the total evaporation. The

sample was heated in a vacuum system for 4 minutes at a distance of 10 cm from an

evaporation boat at the temperature normally required to evaporate silver. The precoat

of heated silver forms particles with the silver deposited according to the method of

Example 3 to produce improved contrast at 600 nm as shown in Figure 3. A

Transmission Electron Microscope micrograph of the sample is shown in Figure 4. The

14
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particle density is approximately 50 particles per micron square. The width-to-length

ratio appears to be approximately 0.2 as required for a 600 nm peak absorption.

EXAMPLE 7

The final example is the polarizing filter designed using polarizing silver thin films to

achieve contrast of 105 or greater. Using a laser polarization checker specially designed

and constructed for this project, we were able to measure contrasts greater than 106.

As optical bench was used to evaluate and position substrates which make up the

elements of a polarizing filter for 589 nm. By .implementing the two substrate filter

designs on the optical bench, the filter design was optimized and components were

evaluated. Using Corning Polacor Sample #15 and disc 03-07-91 (1) with eight silver

layers, a contrast of 337,500 was achieved. Unfortunately Corning was unable to make

available any Polacor glass for assembly into a final polarizing filter.

Using the two silver coated discs 03-07-91 (4) and 03-07-91 (2) we achieved a contrast of

107,400. A ring mount was designed which could be hermetically sealed. The silver

films are fragile and the angular alignment tolerances quite tight. Two polarizing filters

were mounted and assembled which achieved contrasts of 100,000 and 97,000. These

units will be delivered to JPL with the final report. The dependence of contrast on

wavelength is shown in Figure 5.

5. CONCLUSIONS

Under the Phase II contract we developed a light polarizing material consisting of a

transparent sheet material which is microscopically smooth to eliminate shadowing

effects having attached to the surface an array of metal particles in the shape of prolate

spheroids oriented in one direction with their long axis essentially parallel. These

parallel metal spheroids absorb unwanted light with the electric vector E vibrating

along the long axis of the metal spheroids and transmits light with the electric vector E

vibrating perpendicular the long axis of the metal spheroids.

17
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Light with the electric vector vibrating parallel the long axes has absorption which

reaches a peak at a wavelength determined by the aspect ratio of the prolate spheroidal

metal particles and the index of refraction of the material surrounding the metal

particles. The metal spheroids are attached to a transparent sheet material which can be

either glasses and plastics transparent to visible light.

The length-to-width ratio of the prolate spheroids are selected from values in the range

from 1 to 20 in order to set wavelength of peak polarization in the wavelength band

between 300 nm and the near-infrared spectral region. For peak absorption at 600 nm a

ratio of 5 is required for silver particles in air.

We demonstrated single layer silver films with contrast in excess of 1000 at 600 nm.

When multilayer films were separated by a high index material we achieved a contrast

of greater than 40,000 at 600 nm with a single substrate.

The volume of the prolate spheroids seen in electromicrographs appeared to fall in the

range of spheres with diameters ranging from 5 nm to 150 nm. The density was of the

order of 50 per square micron which places the particles within a radius of each other

causing dependent scattering.

A polarizing filter was designed, fabricated, mounted and assembled in a metal holder.

Using two discs coated with multilayers of silver, a final contrast of 100,000 was

achieved. Because of the high density of silver particles, k 1 was reduced and k 2 was

broadened. Future developments would focus on increasing the density of silver

particles and increasing the number of layers of silver particles.

The particles in these films had a volume equivalent to spheres of silver with diameters

in the range of 150 nm. It was found that volume greater than a sphere of 30 nm

diameter introduces unwanted scattering. The scattering could be reduced to a

negligible level by reducing the volume of the particles by a factor of 5 and increasing

the number of particles a factor of 5. The scattering effect was eliminated from the

measurements of the silver film polarizing filters by locating the detector 1 m from the

filter.

19
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In conclusion, a novel material for polarizing visible and near infrared radiation has

been developed and demonstrated under the Phase II contract. A patent application is

being prepared for submission. This approach is found to achieve contrasts greater than

10 5. With reduction of scattering by reduction of particle size, this new high

performance polarizing material will be suitable for a variety of scientific and

commercial applications.
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PART 2: WORK TASK REPORTS

SECTION 1 Filter Design and Theoretical Description

The first technical objective is development of an analytical description for the

concept of a light polarizing material consisting of a distribution of metal

particles on the surface of a transparent optical material or substrate. The

polarizing effect derives from the ability of the dichroic metal particles to absorb

one component of linearly polarized light and transmit the other linearly

polarized component of polarized light. An analytical expression must be

developed to describe the polarization effect of a thin film of metal particles

having anisotropic absorption characteristics. The analytical expression will be

used to reach the final goal of designing and fabricating a polarizing filter with

contrast greater than 100,000 at 590 nm.

The experimental point of departure for this work is the Hertzian thin film

polarizer described by Slocum (1976). The Hertzian thin film polarizer employs

the parallel wire polarization effect described by Hertz more than a century ago.

When parallel wires long compared to the wavelength of the radiation to be

polarized are separated by a distance small compared to the radiation

wavelength, radiation polarized parallel the wire is reflected, and radiation

polarized perpendicular to the wires is transmitted. In order to fabricate a high

performance Hertzian polarizer at 590 nm, wires must be separated by a distance

much less than 590 nm, a very difficult task. Also, the Hertzian polarizer reflects

the unwanted polarization component in the reverse direction of the incident

light. For these reasons the Hertzian thin film approach was abandoned in favor

of a metal thin film which absorbs the unwanted polarization component.

Our experimental work focused on evaporafively deposited silver particles in the

shape of a prolate spheroid. In Section 1.1, the theoretical expression for the

absorption of linearly polarized light by a silver prolate spheroid particle will be

developed. A review of the literature describing absorption characteristics of

metal particles is included in the References section. An absorption expression

will be developed for the anisotropic silver prolate spheroid. The expression

21



takes into account the effect of the index of refraction of the material surrounding

the particle on wavelength of peak absorption, the shape of the particle, and the

variation of absorption with wavelength.

The absorption characteristics of an array of these silver particles distributed

over an optically transparent surface is discussed in Section 1.2. The effect of

particle density is investigated. We describe in Section 1.3 the use of particle

shape to select the wavelength of maximum polarization. The effect of particle

volume on anistropic absorption is considered, and volume dependent scattering

effects are examined. Particle volume and density are major parameter

influencing the design of polarizing material.

Finally, in Section 1.4 equations will be developed which describe the optical

performance of metal thin film polarizers. The analytical expression for a

multilayer polarizer must include the effects of absorption, scattering and

reflection from all films and surfaces. The goal is to derive an analytical

expression for multilayer thin film polarizers which can be used to interpret

experimental results and guide in the design of high contrast polarizers for

590 nm light.

Section 1.1 Optical Absorption of Metal Particles

The technical objective of Task I was development of an analytical description of

polarizing metal thin films. The analytical description would guide the

experimental effort to develop high contrast metal film polarizers and lead to

design equations for fabricating high contrast polarizing filters at 589 nm or any

selected wavelength. In this section we will obtain an analytical expression for

absorption of light by a single silver particle which approximates the shape of the

silver particles found in the evaporated silver films.
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SPHERICAL PARTICLES

Light absorption by metal particles has been investigated for a number of

physical systems containing suspended spherical metal particles. Examples

include silver particles in photographic emulsions, particles suspended as sols,

and metal spheres suspended in glassy materials. In these experiments the

spherical metal particles exhibit a characteristic polarization independent

absorption variation with wavelength. The absorption is characterized by a

wavelength of peak absorption which depends on the metal and the index of

refraction of the material surrounding the particles.

When a beam of monochromatic light of wavelength _, and intensity I0 irradiates

a metal particle of volume V, the light absorbed is given by:

A = I0- I = I0 {1 - e x p[-y]}, (1.1-1)

where I is the intensity of the radiation after absorption occurs and y is the

absorption coefficient for a single particle. The beam transmission is given by T

where:
T = 1 - A. (1.1-2)

The absorption cross section per particle for a spherical particle has the form:

_, = 2nVN03 X B _2 , (1.1-3)

0.111 {Co-A_.2+2N02}2+B2_. 6

where V is the volume of the particle No is the refractive index of the material

surrounding the particle, and A, B and ¢0 are constants which can be

approximated by calculations from the free electron theory or obtained by fitting

data from the bulk optical constants of silver.

The absorption peak occurs when the first term in the denominator of Eq (1.1-3)

is zero. The wavelength of maximum resonance absorption _'m is given by:

1{ }1j2- eo + 2Nd . (1.1-4)
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These expressions were developed by Stookey (1968) and Seward (1984). The

expressions are based on the assumption that the particles are small with respect

to the radiation to be absorbed and the particles are separated by a distance great

enough to be non-interacting.

SILVER SPHERICAL PARTICLES

The absorption cross-section per particle for a silver sphere can be expressed in

the form of Eq (1.1-3) if the constants A, B and c0 are known for silver. Seward

(1984) investigated absorption by silver particles suspended in certain oxide

glasses and found that ¢0 = 5 and A = 55. Since we are interested in particles

resting on a glass surface in the presence of air, we take No = 1.0. The

experimental absorption data reported by Seward was used to determine that

B = 12.8. Therefore, for spherical silver particIes, the value of _ is:

2nV

= _ X
0.111

12.8 _2

{-55X 2 + 7} 2 + 163.84_L 6

(1.1-5)

The wavelength of peak absorption is found to be 357 nm using Eq. (1.1-4). This

is the wavelength of peak resonance absorption in air with No = 1.0. If, however,

the silver spheres are suspended in glass with refractive index 1.5, the

wavelength of peak absorption found from Eq (1.1-4) shift to a layer wavelength,

416 nm.

ELLIPSOIDAL PARTICLES

Polarization dependent absorption is introduced when metal particles take the

shape of an ellipsoid. The ellipsoidal shape of interest here is the prolate

spheroid which is formed when an ellipse is rotated about its major axis of

length a. The aspect ratio of a prolate spheroid is the minor axis b divided by the

major axis a. The expression for the absorption cross-section per particle now
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contains a coefficient L which depends on the aspect ratio of the particle and is

defined by the axis of linear polarization of incident light so that

= 2 VN03 X BX2 (1.1-6)
L 2 {E0-AX2+N02(1/L-1)}2+B2_. 6

The factor L is developed by van de Hulst (1957) and satisfies the relationship

La + Lb + Lc = 1 , (1.1-7)

where the subscripts a, b and c apply to the three cases where linearly polarized

radiation is incident on the particle with the electric vector directed along the a, b

or c axis of the particle. For a prolate spheroid, Lb = L_, so these are actually two

values of L coefficients where

L a = 1 - 2L b (1.1-8)

SILVER PROLATE SPHEROIDS

Since the expression for the wavelength of peak absorption for a silver prolate

spheroid is

1{ }1,25 + N02 (1/L - 1) (1.1-9)
= q55

polarized light incident along the a axis or b axis has an absorption peak

occurring at different wavelengths. For a spherical particle

L a = L b = L c =1/3, (1.1-10)

and, the peak resonance absorption occurs at _m = 357 nm as indicated above for

spheres in air. When light polarized along the a axes is incident on the spheroidal

particles Xm is greater than 357 nm. However, when light is polarized along axis

b, Km is found to be at a value less than 357 nm.
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The prolate spheroid factor L a is given by the following expression when a > b:

La = _ -1+_. In , (1.1-11)
e2 2e 1 - e

where e 2 = 1 -(b/a) 2 . (1.1-12)

The values of b/a, _, L_, L b and 1m for No = 1 and No = 1.5 are shown in Table

1.1-1. The goal of this analysis is selection of a particle shape for peak absorption

of the polarization component along the a axis of the prolate spheroid to occur at

approximately 600 nm. By setting Eq. (1.1-9) to Km= 600 nm for No = 1.0 we can

solve for L,. The coefficients for Xm = 600 nm are:

L a = 0.06 ; L b = Lc = 0.47 (1.1-13)

It can be seen from Table 1.1-1 that for Xm = 600 nm in air, b/a must be slightly

greater than 0.2. This establishes the aspect ratio for the silver prolate spheroids

to be used in polarizing thin films for 600 nm light if they are attached to a

surface but essentially suspended in air with N o = 1.

If the silver spheroids are immersed in a material of refractive index N o = 1.5

typical of many optical materials and optical adhesives, Eq. (1.1-9) can again be

used to find the L coefficients when Xm = 600 and N o = 1.5. In this case,

L_ = 0.135 ; Lb = Lc = 0.4325. (1.1-14)

It can be seen from Table 1.1-1 that the ratio b/a is slightly less than 0.4 when

these conditions are satisfied. This analysis predicts that aspect ratio b/a of a

silver prolate spheroid with peak absorption at 600 nm must be approximately

double if the material surrounding the particle is changed from a refractive index

of No = 1.0 to No = 1.5. This fact can be expressed as a _=_5b for No = 1 and a = 2.5b

for No = 1.5. In Section 3, the experimental preparation of particles satisfying

these conditions will be reported and discussed.
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Table 1.1-1

Anisotropic absorption values for silver prolate spheroids.

b/a e _.m for L, hn for

No = 1.0 No = 1.5

1.000 0.000 0.270 0.000 0.224

0.900 0.436 0.364 0.306 0.429

0.800 0.600 0.372 0.276 0.445

0.700 0.714 0.384 0.244 0.466

0.600 0.800 0.399 0.210 0.495

0.500 0.866 0.421 0.174 0.535

0.400 0.917 0.455 0.135 0.594

0.300 0.954 0.513 0.095 0.692

0.200 0.980 0.631 0.056 0.885

0.100 0.995 0.984 0.020 1.438

0.080 0.997 1.158 0.014 1.703

0.066 0.998 1.339 0.011 1.979

0.057 0.998 1.500 0.008 2.224

0.050 0.999 1.663 0.007 2.472
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Section 1.2 Metal Particle Arrays

Having identified the silver prolate spheroid as the particle of choice for 600 nm

resonance absorption peak, the issue of particle arrays will be considered. The

light intensity I transmitted through the thin film is given by the expression:

I=I0exp[-Ny] , (1.2-1)

where y is given by Eq. (1.1-5), N is the number of metal particles in the incident

beam of intensity I0. The fractional transmission of the metal film is T = I/I0 and

the fractional absorption A = 1 - T. The transmission can be written

T = e x p (- _) (y/2_V), (1.2-2)

where _1/= 2_NV . (1.2-3)

The quantity NV is the volume of silver in the path of light of intensity I 0.

Five values of _ have been used to calculate transmission curves which have

values of T at 600 nm ranging from T = 0.1 to T = 0.00001. The values of _ and T

are shown in Table 1.2-1.

The absorption characteristics of arrays of similar particles in air (No = 1.0) are

seen in the absorption curves for each value of _ shown in Table 1.2-1. In each

case a MATHCAD program was used to calculate the absorption of light

polarized along both the a axis and the b axis. For each value of _ a third curve is

calculated showing absorption for the same volume particle which is formed into

a sphere (a = b = c). Absorption curves for _ = 0.015 are shown in Figures 1.2-1, 2

and 3 where contrast (C = k_/k 2 = T,/Tb) at 600 nm is 9.8. Absorption curves for

= 0.03 are shown in Figures 1.2-4, 5 and 6, where contrast at 600 nm is 99.7.

Absorption curves for _ = 0.045 are shown in Figures 1.2-7, 8 and 9 where

contrast at 600 nm is 995. Absorption curves for _ -- 0.061 are shown in Figures

1.2-10, 11 and 12, where contrast at 600 nm is 11,033. Absorption curves for

= 0.076 are shown in Figures 1.2-13, 14 and 15, where contrast is 110,222.
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Table 1.2-1

Dependence of Transmission T on Wavelength and _ for No = 1.0 and L, = 0.6.

.015

.030

.045

.061

.076

T (600 nm) for La

0.102

0.010

0.001

0.00009

0.000009

T (600 nm) for L b

0.996

0.997

0.995

0.993

0.992

Table 1.2-2

Dependence of transmission on wavelength and _g for No - 1.5 and L. = 0.135

and L b = 0.47

_g

0.020

0.041

0.061

0.082

0.102

T (600 nm) for L a

0.112

0.011

0.001

0.00013

0.000014

T (600 nm) for L b

0.989

0.977

0.966

0.955

0.944
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A second option is to embed the silver spheroids in a high index material and

select the ellipsoid shape to provide maximum absorption for light polarized

along the a axis for 600 nm. In this case we have used the MATHCAD program

to calculate absorption for light polarized parallel axis a, parallel axis b and for

the case of the particles shaped as a sphere (a -- b = c) for a refractive index of 1.5.

The absorption curves for _/ = 0.020 are shown in Figures 1.2-16, 17 and 18.

Absorption curves for _ = 0.04 are shown in Figures 1.2-19, 20 and 21.

Absorption curves for _ = 0.06 are shown in Figures 1.2-22, 23 and 24.

Absorption curves for _ = 0.081 are shown in Figures 1.2-25, 26 and 27.

Absorption curves for _ = 0.102 are shown in Figures 1.2-28, 29 and 30.
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Section 1.3 Metal Particle Sizes and Shapes

Analysis of absorption characteristics of ideal silver prolate spheroids indicates

that effective polarizers for the visible spectral region can be fabricated using

arrays of these particles. There are two key issues which must be resolved in

order to design an effective polarizing thin film once the aspect ratio is

established for 600 nm peak resonance absorption. The first issue is particle

volume V. The second issue is particle density N. Both of these factors enter the

absorption equation through the term V = 2_NV. The first condition which must

be met is that _g be large enough to produce the desired contrast as indicated in

Table 1.2-1. The product NV is actually the volume of silver in the optical path

for a unit cross section of optical beam.

For high performance polarizers and polarizers used for visual or ophthalmic

applications it is important to have a clear material which means that a hazy

appearance caused by light scattering must be avoided. Investigators working

with silver based photochromic glasses and silver based glass polarizer have

reported that when silver particles are too large, scattering causes a hazy

appearance in the material. There is also a lower limit on particle size which is

set by the fact that for silver particles with diameter smaller than 5 to 10 nm, the

mean free path of the conduction electrons is limited and the absorption peak is

broadened.

The upper limit on particle size is set by the onset of significant scattering which

causes a hazy or translucent appearance in the film. To avoid these effects the

particles should have diameters less than 50 nm and preferably as small as

20 nm. Most experimental data on particle sizes was obtained from silver halide

particles prior to reduction to metallic silver. Since silver occupies somewhat

smaller volume than the precursor silver halide particles, these upper limits on

particle size are only approximate. The range for particle diameter of an

equivalent spherical volume of silver is in the diameter range form 20 nm to

50 nm. Effective polarization has, however, been observed with silver particles

having a diameter as large as 500 nm.
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PROLATE SPHEROID PARTICLES SIZE

Having bounded the volume V of equivalent spherical particles, it is now of

interest to relate the volume V to the shape of a prolate spheroid which also has

volume V. A sphere of diameter d = 2r has a volume V where

4_ r3 nd 3

V = -- (1.2-1)
3 6

A prolate spheroid of major axis a and minor axis b = c is formed by rotating an

ellipse of major axis a and minor axis b about the a axis. The volume of prolate

spheroid is

V = 4/3 7tab 2 (1.3-2)

The ratio a/b equals k where k = 5 for peak resonance absorption at 600 nm.

Since the volume of the sphere and prolate spheroid are the same, by setting Eq.

(1.3-1) and Eq. (1.3-2) equal, it is found that the length of the prolate spheroid 2a

is given by

2a = (k) 2/3 d , (1.3-3)

where d is diameter of sphere with volume identical to the prolate spheroid. This

relationship will be used to estimate the volume of actual silver particles as

determined by electron microscopy.

For the case where k = 5 for peak resonance absorption at 600 nm, the particle is

2.9 times longer than the diameter of a sphere of identical volume. Since good

polarization characteristics have been found for particles with diameter d in the

range from 20 nm to 50 nm, the silver prolate spheroids for k = 5 would be

expected to fall in the length range (2a) from 60 nm to 150 nm.
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PARTICLE DENSITY

The design goal is to cover the surface with parallel prolate spheroids with a/b =

k = 5 and with length in the range from 60 nm to 150 nm. The next issue is the

number of metal particles required to achieve effective polarization. This can be

established by noting that the absorption cross section is proportional to _ where

= 2xNV. Since V is specified by the equivalent diameter of the metal particles,

we can select a contrast value C = kl/k2 and calculate the required value of _.

Then N can be found from the expression

N = _/2_V . (1.2-4)

From Table 1.2-1, we find that, for a contrast of 997 at 600 nm, _ = 0.030. For a

contrast of 10,860, _/= 0.045. For particles with a diameter of 50 n (0.05_0, the

volume is 6.55 X 10-S_m3. For the case where _ = 0.045, we found from Eq. 1.2-4

that N = 109 particles. Since our silver films are deposited on a flat surface, this is

a density of 109 particles per square micron. Since the fractional coveting of the

surface is the critical issue, the individual Particles in spherical form which can

be contained in a single layer of spheres is l_m2/d 2 or 1_m2/0.0025_m 2 or 400.

Approximately 27% of the surface is blocked by metal particles. If the equivalent

sphere has a diameter of 100 nm (0.1_tm), only 14 particles are required, but 100

particles are required to cover the surface area of I square micron.

The design goal can be stated as coveting the surface with a coating of aligned

silver prolate spheroids having a/b = 5 and a length of 150 nm. The contrast

would be expected to be of the order of 104 . This is, of course, an ideal film.

NON-IDEAL FILMS

The film designed in this manner would have a contrast greater than 10,000 at

600 nm and absorption curves from Ta shown in Figure 1.2-10 and T b shown in

Figure 1.2-11. However a number of factors can cause experimental films to fail

to achieve this ideal performance. We now examine these factors which can

cause actual films to deviate from the ideal.
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1. Inaccuracies in the Analytical Description

The analytical expression must accurately describe the polarization

dependent absorption of a silver prolate spheroid. This implies that the
mathematical expression for absorption is correct and the constants for

silver are accurate for the wavelength region of interest. It is our opinion

that these expressions and silver constants are accurate for silver particles

based on agreement with experimental results.

2. Particles

The particles must meet the conditions for which the equations are valid,

namely independent scattering. As discussed by van de Hulst (1957), a

scattering event is one in which electromagnetic radiation interacts with a

scattering center (in our case a submicroscopic prolate spheroid) to

produce scattering or absorption. If such particles are sufficiently far from

each other, it is possible to describe the scattering of one particle without

reference to the others. This is called independent scattering and the

equations used in Section 1 describe this case.

When the particles are close enough to interact, the problem is one of

dependent scattering. The distance between particles to ensure

independent scattering is given by van de Hulst as three times the radius.

While not a general rule, it serves as a bench mark for analysis of actual

structure in our experimental films. The goal is not to develop a

mathematical description for dependent scattering, but rather we want to

fabricate metal thin films which satisfy the conditions of independent

scattering, since it is to be anticipated that contrast and transmission will

degrade with increased dependent scattering.

3. Distribution in Particle Shape

Since we have assumed a single particle size and aspect ratio for 590 nm,

performance will be degraded by variations is aspect ratio of the metal
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spheroids. The wavelength of peak absorption varies with aspect ration,

therefore a distribution of particles with different aspect ratios decreases

the contrast ratio and broadens the resonance absorption curve. Using Eq.

1.1-9 we have calculated the wavelength of peak absorption (A a) for a

range of b/a between 0 and 1 as shown in Figure 1.3-1. The upper curve is

for No = 1 while the lower curve is for No = 1. It can be seen that a 10%

variation on b/a can cause variations of the order of 100 nm in the peak

absorption wavelength. Our goal experimentally is to produce metal

spheroids with a very small range of b/a values about the b/a design

goal. Note that in the range of b/a between 0.8 and 1.0 the equation is not

valid as seen in Figure 1.3-1 and a different expression for wavelength of

peak resonance absorption is required as a ___-b and the shape becomes

spherical.

Section 1.4 Polarizing Filter Design Equation

The goal was to formulate an analytical expression for light transmitted by a

polarizing filter made up of one or more polarizing metal thin films. In practice it

is useful to fabricate the filter using two or more substrates, each coated with a

polarizing metal film. The problems of mechanical alignment of two or more

substrates will be deferred until Section 5. In this section the impact of thin film

physics on filter design will be considered.

ABSORPTION

A light beam for polarizer evaluation is ideally unidirectional, lineally polarized,

and monochromatic, i.e. confined to one frequency. The beam has intensity I0

which indicates the total energy flux in the beam. Ideally, the effectiveness of a

polarizing filter is judged by its extinction ability. The polarized beam of

intensity I0 enters the filter which is set for maximum extinction and leaves the

filter diminished in intensity because of absorption, and has intensity I0 - aI. Here

AI is the absorbed radiation. A = AI/I0 is the fractional absorption and 1 - AI/I0 is

the fractional transmission T. The case of maximum absorption is designated
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state 2 which is the case of the electric vector is parallel the major axis of the

silver prolate spheroids. State 1 is the position where the electric vector is parallel

the minor axis of the prolate spheroid. Principle transmittances are defined as

k I = (I0 - AI1)/I o and k 2 = (Io - AI2)/Io. Useful indicators of polarizer performance

are kl, k2 and contrast C = kl/k2 measured at a specific wavelength, normally the

wavelength of peak resonance absorption. A second measure of polarizer

performance is absorbance which is defined as

absorbance = - loglo (T), (1.4-1)

where T is the transmittance. Normally the absorbance of a filter is stated for

T = k2 at a specific wavelength.

By placing a light detector after the beam, we measure the effect of extinction of

the test beam by the polarizing filter. It is assumed up to this point that the

extinction is due to absorption, but in fact it is necessary to include the effects of

reflection and scattering of light from the test beam.

REFLECTION

Each silver film is deposited on a glass substrate which is usually a thin disc of

BK-7 glass. Each surface reflects approximately 4% of the indecent light. The

beam passing through a disc will no metal film present would lose 8% of its

intensity. The loss of intensity of the beam AI would have an absorption term

AI(A) and a reflection term AI(R). For evaluation of experimental thin films the

surface reflectance was usually neglected. However, in the evaluation of

polarizing filters described in Section 5 the surface reflection terms were taken

into account.

A second reflection effect can occur when very dense metal films are used.

Although we were not able to measure this effect directly, reflection is thought to

occur when the particles are dense enough to cause dependent scattering. This

reflection effect should be eliminated when the particles are separated by a

distance great enough to eliminate dependent scattering. It would, however, be
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expected to be different for axis 1 and axis 2. The term AII(R) = AI:(Rs) + AI1(R_).

Where subscript s indicates surface reflection and subscript f indicates reflection

from the metal film. We have then:

I = Io - = Io- AII(A)- AII(R0 - AI1(Rf) , (1.4-2)

where I is the transmitted beam intensity in orientation 1. A similar equation can

be written for light polarized along axis 2.

SCATTERING

The last effect to be included in the observed extinction observation is scattering

by the metal particles. An individual particle has both an absorption cross

section and a scattering cross section. For polarizers used in applications for

human vision, scattering effects must be reduced to a negligible level or the

material appears hazy or translucent. Scattering is also harmful in high

performance polarizers. A major technical issue is the design and manufacture of

high performance crystal polarizers is eliminating of scatter within the polarizer

to achieve a contrast of 106 or better.

The problem for thin film polarizers is not only scattering from the polarizer

package but scatter from the metal particles which make up the polarizing film.

There are three major effects of particle scattering. The first is scatter of the

incident light out of the transmitted beam which can be written AI2(Sa). This

effect actually improves the extinction of the filter by an amount AI2(Sa). The

second effect is forward scatter in the direction of the beam. The term AI2(S f)

indicates the forward scatter into the solid angle subtended by the light detector.

The forward scattering effect which degrades polarizing filter performance is

cross polarization scattering. Cross-polarization scattering occurs when a linearly

polarized beam with electric vector along the particle a axis (condition for

maximum absorption) is scattered by the silver particles into the polarization

state with electric vector along the b axis. This transfer of radiation from

polarization state a to polarization state b, lowers the effective contrast since an

analyzer polarizer crossed with the metal film polarizer would see the cross-
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polarization as effectively increasing k 2. The cross-polarization effect can be

eliminated, we believe, by reducing the volume of silver particles. This reduction

was beyond the scope of the current contract. However, the scatter effect was

eliminated during actual extinction measurements by locating the laser light

detector at least one meter from the metal film polarizer.
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Section 2:

Filters

Optical and Structural Investigations of Metal Thin Films and

The technical objectives of Task 2 included development of procedures for

investigating the structure of metal thin films and the anistropic polarization

dependent absorption characteristics of metal thin films. The technical goal is to

correlate the film structure with the optical absorption characteristics in Section

3. In addition to these general characterization procedures, a method and

apparatus is required for measuring the performance of polarizers with contrast

ratios in excess of 105 at 590 nm wavelength.

The technical approach, measurement procedures, and resulting instrumentation

used to meet each of these objectives are described in the following three

subsections. Specifically, we selected a spectrometer and instrumentation which

allowed us to measure polarization dependent absorption in the spectral band

from 450 nm to 1550 nm. In order to observe the microscopic structure of metal

thin films we obtained transmission electron microscope (TEM) images from the

University of Central Florida and scanning electron microscope images from the

University of Arizona. The University of Central Florida had a series of technical

problems meeting their contractual obligations and were eleminated from the

technical team after 12 months. A special HeNe laser which emitted radiation at

594 nm was used as a light source in a special apparatus assembled to evaluate

polarizers with contrast greater than 10 s. We demonstrated this evaluation unit

with a pair of crystal polarizers obtained from JPL for calibration.

Section 2.1 Polarization Dependent Absorption Spectrum

A method was required for evaluating the polarization dependent absorption

spectrum of thin metal films which is accurate and reproducable. A special

spectrometer was assembled for this task. A schematic representation of the

spectrometer is shown in Figure 2.1-1. The wavelength of light is selected by a

Beckman DK-7 Duel Beam Spectrophotometer. Radiation is provided by a high

brightness halogen bulb located in the source optics of the Beckman DK-7. The

light is passed through a light chopper in preparation for narrow band detection

by a lock-in amplifier. A beam splitter is placed in the sample chamber of the

55



L

H

o
b

H

!

II

c_

!

rj
0

II

I

J
o

o

II II II I1 II

d
0

0_

0

_L

0

!

c_

0

56



spectrophotometer in order to direct the horizontal light beam in a vertical

direction. A Glan-Taylor prism is placed in the vertical beam to polarize the

vertical beam of radiation.

A special sample holder is mounted on the spectrophotometer so that thin film

samples deposited on glass discs can be placed in the path of the vertical

polarized beam while resting flat on the sample mount. Special sample holders

were designed so that the vertical beam passes through the center of the thin film

sample. The Glan Taylor Polarizer is rotated until maximum absorption is

observed. The sample is held in a square mount which can be rotated 90 degrees

in order to observe minimum absorption.

The spectrometer can be tuned over a range from 400 nm to 1550 nm. Using the

rotating sample method described above the principle transmittances of a metal

thin film can be observed for a specific wavelength. The maximum transmittance

k 1 is found by dividing the light at minimum absorption by the light incident on

the detector when the sample is removed. The minimum transmittance is found

by dividing the light at maximum absorption by the light transmitted when the

sample is removed and the polarized reference beam is incident on the detector.

Throughout this investigation, metal thin films were optically characterized by

the values of kl and 1<2at the wavelength of interest.

Section 2.2 Electron Microscope Structure Investigation

The technical objective was to develop scanning electron microscope (SEM) and

transmission electron microscope (TEM) techniques for examining the structure

of polarizing silver films. During the first 18 months of the project we attempted

to use the University of Central Florida as a team member for TEM and SEM

work. It became apparent that UCF had seriously over stated their electron

microscope capabilities for analyzing silver films structure. Neither their TEM or

SEM instruments could be used, even after much cost and delay were incurred.
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The initial goal was to establish a correlation between the various deposition

process parameters employed for making thin silver film polarizers and their

anisotropic microstructure. These coatings were deposited in a way which

resulted in small sized whiskers with a spedfic directional orientation. Several

attempts were made with both Transmission and Scanning Electron Microscopes

(TEM and SEM) to determine the size, density, and orientation of the whiskers.

The results of the TEM and SEM investigations were delayed for many months

because of equipment problems at UCF. The primary requirement for this project

was the investigation of several silver films with a TEM. This study required

sample preparation which involved carbon coatings. For this study, a used

diffusion pumped system was acquired and fully rebuilt. For the directional

shadowing of the thin film samples, a special T-shaped glass chamber was

ordered from Blazers. Because of shipping delays and the amount of work

required to rebuild the deposition system, specimen preparation was not

possible until December, 1988. The TEM (Hatachi model HU-11E), which was

located in the College of Engineering at UCF needed a full service before it was

usable. This was completed in July, 1988. Because the TEM was an older model,

it required extensive servicing to keep it operational. Therefore, to facilitate

progress, a collaborative effort was established with the University of Florida

(UF) in July 1989. Much of the TEM work was performed on the JEOL 2000 TEM

system at the Major Analytical Instrumentation Center (MAIC)/UF with the help

of Dr. Augusto Morrone. Further delays were caused by a period of rapid

turnover in the undergraduate students involved in the project. The samples,

which were supplied by Polatomic, were extremely delicate and had to be

handled very carefully. The samples were also susceptible to moisture damage

and were shipped sealed in plastic with desiccant. Upon arrival, the samples

were transferred to vacuum desiccators.

TEM Sample Preparation

Three sample preparation techniques were used to make specimens for TEM

imaging. The first was the microcleavage technique. This involved scratching the

surface with a diamond scribe which created several small glass particles with

the silver whiskers attached. There particles were transferred to a standard

58



copper grid used for specimen mounting in the electron microscope. It was

hoped that it would be possible to determine the whiskers orientation from these

images. Unfortunately, the substrate microroughness and the random orientation

of the glass particles on the copper grid made an absolute angular determination

impossible.

The technique that was used for the majority of the samples was a lift-off

method. The samples were first coated with a thin carbon film doped with a

small amount of platinum to increase the image contrast and then with another

layer of plain carbon to strengthen the film. The carbon deposition was

performed in a Varian vacuum system at 10-s to 10 -6 mbar. After coating, the

samples were left in desiccators in a near-clean room environment to prevent

further contamination and damage. The films were transferred to the copper

grids by immersing the samples in a 10% HF solution at a shallow angle so that

the HF acid creeps in between the carbon film and the substrate, etching the glass

away. Surface tension causes the film to float off the substrate. Portions of the

film are then placed onto the copper grids. To reduce the long term corrosion of

the silver film, the HF solution was diluted to about 0.5% prior to removal of the

specimens. This technique allowed for the preparation of both bulk surface and

edge samples. The specimens were dried and placed in a desiccator.

The third technique attempted was the slicing of bonded samples for cross-

section TEM (XTEM). This method should result in excellent edge shots

providing the samples survive the preparation process. The samples were sliced

with a diamond saw and the ground and polished until they were about 1 _m

thick. The sample was then ion milled until it was transparent to the electron

beam. This was a difficult and time consuming technique, which required

durable samples.

TEM Analysis

Sixteen of the samples for normal incidence TEM imaging were prepared with

method two (2) and investigated in the TEM at MAIC/UF with the help of Dr.

Augusto Morrone. These samples had different whisker sizes and densities
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(density information was provided as a scale form 1 to 10 with 10 being the

highest density). Pictures of some of the samples (#7, $9 and #16) were not taken

because of sample drift, which could not be eliminated. Sample #2 was not

supplied. The TEM images of each sample were ordered by whisker size. The

discrepancy may be a result of the deposition angle, which was not provided, or

it may be some other process parameter. Three of the samples were not included

in the listing: sample 1 appeared to be a bad sample, either from preparation or

from deposition; samples 19 and 20 were not included in the initial list of

densities. For the higher density samples the whiskers were elongated and had a

definite orientation. The orientation corresponds to the deposition direction. For

the low density samples, the whiskers were not elongated and there was a large

size distribution. There were also a significant number of nucleation sites that

had not formed into whiskers. Image processing of these micrographs should

allow for the determination of film density as well as a determination of the size

and aspect ratio distribution for each sample.

Edge shots were also attempted with some of the lift-off samples. Although it

was possible to observe edges and see a definite angular orientation, this angle

was probably rotated with respect to the image plane. Therefore, any angular

measurement would be inaccurate. The tilt and rotation capabilities of the TEM

specimen stage did not make it possible to resolve this problem. The best method

for determining the angular orientation of the whisker was to view a cross-

section cut from the bonded samples provided. The sample preparation time was

estimated at 16 to 20 hours per sample provided the sample was durable enough

to survive the process.

Electron Diffraction Analysis

Electron diffraction images were taken with the MAIC TEM for each of the above

samples. The ring diffraction patterns were used to determine the crystalline

phase of the silver. Table 2.2-1 shows the expected ring locations for the standard

crystalline phases. By comparing the ring radii of our samples with those of

Table 2.2-1, we can determine the crystal structure. To determine the crystal

structure we need to relate A(Ri/R0) 2 to allowed N for the different crystal
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phases indicated in Table 2.2-1. For our data this required multiplying the ratios

by three (3) to form integers (within measurement error). Comparison of the

experiment values with Table 2.2-1 shows that the Ag films have an fcc crystal

structure. Comparison of the ring structures for the other samples shows that

they are all fcc. As the size and density of the whiskers decreases, the intensity of

the diffraction ring decreases. Also, the number of distinct diffraction spots

decreases. This result is expected because there is less crystalline material to

diffract the electrons. To obtain any further information from these images

would require exact determination of the ring locations and thicknesses. With

this knowledge it my be possible to estimate crystallite size and film stress levels.

Unfortunately, it is not possible to measure the ring properties accurately

without image processing. One diffraction image was digitized and the digital

image was analyzed with the UCF Gould computer. A histogram of the image

shows that the image consists of 12-15 gray levels out of a possible 256. This

makes it possible to accurately determining diameters and widths.

SEM Analysis

SEM micrographs were taken of the surface of four of the samples that were also

used for TEM investigations at UCF. This allowed for comparisons of the two

techniques. Because these samples were not deposited onto conductive

substrates, they were coated with a gold-palladium layer to increase electron

conductivity. Although a magnification of 50,000 was possible, it was easily seen

that the SEM photos did not have the high resolution of the TEM micrographics.

It was difficult to distinguish individual whiskers, and in some cases orientation

was hard to see. With the resolution of the TEM available, SEM analysis of the

film surface did not provide any additional information. Samples deposited onto

conductive substrates were also analyzed with the SEM. The results were similar

to the samples discussed above.

Two technique were attempted to determine the angular orientation of the

whiskers. The first required cleaving a sample on a conductive substrate. The

sample was broken parallel to the whisker direction and prepared for SEM

analysis. Because the sample was on a conductive substrate, it was not coated.
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Note that there is a strong possibility that the film was damaged from the

cleaving. Unfortunately, because of strong cl_arging no imaging was possible. A

second method, which viewed the whiskers at oblique incidence near a scratch,

was used. From the picture, we see that an accurate determination of the whisker

angle was not possible.

Because of the failure of UCF to produce SEM images, a new source was sought.

Dr. V. A. Lindly of Electron Microscope Consultants at the University if Arizona

was selected. Dr. Lindly provided all usable SEM micrographs used to analyze

film development techniques in Sections 3 and 4.

Section 2.3 High Contrast Polarizer Evaluation

TEST APPARATUS

The project goal is production of polarizing filters with contrast greater than 105

at 589 nm. It was necessary, therefore, to design and assemble a test apparatus

capable of making accurate measurements of this level. A preliminary design for

the apparatus called for a laser light source. The design was evaluated at 800 nm

using a High Brightness Spectra Diode semiconductor laser and a broad band

Glan Taylor crystal polarizer with contrast in excess of 100,000:1.

The apparatus can be configured as an AC detection or DC detection system. The

DC detection system is shown schematically in Figure 2.3-1. The laser light

source is a PMS HeNe laser which delivers 2.5 mW of unpolarized radiation at

594 nm. A beam expander is used to increase the beam diameter from 2 mm to

5 mm. The beam is polarized by a Karl Lambrecht crystal polarizer of the Glan

Taylor type. For calibration purposes a polarizer analyzer was inserted in place

of a thin film polarizer. A light shield was added to shield the detector, a Si

photovoltaic device from Oriel. A beam power meter from Newport Research

Corporation was calibrated to read from 0.002_tW to 1.0 X 104_W.
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The optical components were mounted to an optical rail. The sample or analyzer

crystal polarizer was mounted in a machined holder which permitted rotation

over 360 ° about the beam axis. A micrometer screw adjustment permitted

reading the angular position to 0.1 minute of arc.

The AC detection system, shown in Figure 2.3-2, contains the laser, beam

expander, polarizer, light shield and silicon detector which are in common with

the DC system. However, a light chopper and reference generator is added after

the laser. A neutral density filter is used to set the light level into the Ithaco lock-

in amplifier. A preamp is added between the detector and the lock-in amplifier.

The following sources were identified for test equipment and critical

components:

1. Laser Model 0250 M 594.1nm, 2.5 mw Random Polarized.

P.M.S.Electro Optics, 1855 South 57th Court, Boulder, CO 80301

2. Glan Thompson Prism Polarizer #MGT3S10, with visible A/R

coat. Karl Lambrecht Corp., 4202 N. Lincoln Ave., Chicago, IL

60618.

3. Photovoltaic Detector, STD#7182. Oriel Corp., 250 Long Beach

Blvd., P.O.Box 672, Stratford, CT 06497

4. Laser Power Meter, Model 820, Newport Research Corp., 18235

Mt. Badly Circle, Fountain Valley, CA 92708

5. a.) Lock-In Amplifier, Model 3921, b.) Preamp cable #3921V1, c.)

Current Sensitive Preamplifier Model 1642, ITHACO, 735 Clinton

St., P.O.Box 6437, Ithaca, NY 14851-6437
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SYSTEM LINEARITY

To measure the system linearity requires that the light power be variable and its

relative power be known over a six orders of magnitude range. The light detector

and the readout electronics must be also linear over six orders of magnitude.

When two polarizers are aligned and their polarization axis are rotated with

respect to each other by an angle 0, the amplitude I of the light vector in the

beam varies as cos0, or

I = k Io cos0 (2.3-1)

where:

k

Io

0

= a constant

= amplitude of incident light

= angle between the polarization axes of the two polarizers

The power P in the radiation is proportional to the square of the amplitude

(electric or magnetic), so

P = 12

= k2Io2 cOS20 (2.3-2)

When 0 = 0, then the transmitted power has its maximum value. When 0 = 90 °

the transmitted power has its minimum value. The holder of the analyzer

polarizer is calibrated in the range 0 - 360 °, and its micrometer screw permitted

reading 0 to within 0.1 °.

The Si photovoltic detector is linear over many orders of magnitude provided it

is operated in the current mode as it was here. The electronics following the

detector was a.) The Newport Research Corporation Power meter and b.) the

ITHACO Lock-In Amplifier. Both of the systems are designed to be linear to at

least six orders of magnitude.

The light power value was calculated to be proportional to cos20 and the value of

0 was read to within 0.1 minutes of arc. The value of cos20 was plotted along the

X-axis. The relative light power was read on the electronic read out systems
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which were calibrated individually. The relative light power was plotted on the

Y-axis.

LINEARITY OF THE DC SYSTEM

Two JPL polarizers, each labeled MGTYE20-BB580-780, were supplied for

evaluation. For these tests one was further identified as #1, the other as #2. The

assumption is made that they are identical in performance. The data for them is

plotted the Figure 2.3-3. At the low end of the data there are great changes in

light power as 0 approaches 90 °. The value of COS2(0---)90 °) cannot be plotted

since at 0=90 ° cos20=0 and the point is off the log scale. In addition as 0

approaches 90 °, its value could be read with less accuracy. In addition the value

of the light power is at the lowest range of the power meter and its value was

estimated. Nevertheless the system is linear over a range approaching six orders

of magnitude. Within this range the system can be used with confidence to

measure the polarization values kl and k 2 of any polarizer.

The Karl Lambrecht Glan Thompson polarizer was the best quality availaable.

The cross sectional area was smaller than those of JPL but adequate for our

application. Preliminary tests showed that it had a k 1 orientation light power

transmission that was higher than that of the JPL polarizers. In addition when it

was crossed with the JPL#2, the minimum value of transmission, k 2 orientation,

had a lower value than that for the 2 JPL polarizers. In fact the light power was at

the limit of the Newport meter and was estimated. The linearity of the K.L. and

the JPL #2 combination is plotted in Figure 2.3-4. The D.C. system is comfortably

linear over six orders of magnitude. It is possible to approach the 7th order at the

low end by estimating the meter reading at the very low end of the scale. The

D.C. system is linear and would be suitable for measuring k v k 2 for most

polarizers.

LINEARITY OF THE AC SYSTEM

Here we used the Karl Lambrecht as the radiation polarizer and the JPL #2 as the

analyzer. Data is plotted in Figure 2.3-5. The Lock-In preamplifier makes possible

the extension of reading to very low values. It was found that there is a zero
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reading that can be subtracted from the experimental reading to extend linear

range to seven orders of magnitude. This is adequate for all situations we

encountered. Decreasing the gain of the preamplifier could possibly extend the

linearity to eight orders of magnitude. The A. C. system is linear to seven orders

of magnitude and is suitable for measuring kl, k2 for most polarizers to be

encountered.

MEASURING THE POLARIZATION PARAMETERS OF THE [PL AND KARL

LAMBRECHT POLARIZERS

A. Theory

This technique developed by Rupprecht (1962) requires two identical polarizers.

Let the emission of the laser be

1/2 Ptv + 1/2 Pth = Po , (2.3-3)

where

Po = Total emission of the laser

1/2 Ptv = component polarized in the vertical plane

1/2 Pth = component polarized in the horizontal plane

Inserting a polarizer and rotating it in the vertically and horizontally planes

yields measured values:

P,. = 1/2 P (tvT 1 + thT 2) (2.3-4)

Ph = 1/2 P (t,,T 2 + thT1) (2.3-5)

and combining (3), (4) and (5) yields:

(Pv + Ph)/Po = T1 + T2 (2.3-6)

Adding the second identical polarizer in series with the first but rotating the

second one so it is crossed with the first, and making measurements yields P±

where:

P± = 1/2 P(t,,T1T 2 + thT1T2)

= 1/2 P(tv+th) T1T2

from which:

P± / Po = T1 T2 (2.3-7)
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Combining Eq. (2.3-6) and Eq. (2.3-7) and solving for T1 yields a quadratic in T 1

from which:

{ P. ol,.} Ph Pvp.T1 = 1 + 1-4 = - . (2-8)

2 Po (Ph+Pv) 2 Po Ph+Pv

Substating in Eq. (2.3-7) and solving for T 2 yields:

 eh pv,{C 11,,}p.T 2 = 1 - 1-4 ---- (2-9)
2 Po (Ph+Pv) 2 Ph+Pv

T1 and T 2 are calculated from measured values.

B. Measurement and calculations, JPL Polarizers

Measurements were made on the DC system. Data

presented in tabular form.

Table I ]PL Polarizers (first run)

Po Pv Ph P±

p.wX10 4 _wX104 _twX104 _w

and calculations are

0.388X104

These yield:

0.168X104

T1 = 0.874

T 2 = 1.47 X 10-7

Repeating gave:

Po

_wX104

0.171X104

Table II ]PL Polarizers (second run)

Pv Ph

pwX104 _wX104

0.005

P.l.

_w

0.391X104

These yield:

0.169X104

T 1 = 0.880

T 2 = 1.45 X 10 -7

0.177X104 0.005
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Averaging results of Table I and II give:

T--_= 0.880

_-2 = 1.46X10 -z

and

T1/T 2 = 6.01 X 106

C. Karl Lambrecht Glan Thompson Polarizer

T 1 values are determined from P,, and Ph measurements but do not require a

second identical polarizer. To obtain T2, the JPL #2 polarizer was used to

determine P± for which the value was at the lower limit estimation allowed. Had

another similar polarizer been available the estimated value would have been

probably cut in half. The alternative would have been to use the AC system. This

was not done.

The results of one measurement are given in Table III.

Table III Measured values for Karl Lambrecht polarizer

Po Pv Ph P±

_w _w _w I.tw

0.393X104 0.186X104 0.180X104 0.0002

From these values we calculate:

T 1 = 0.931

T 2 = 5.46 X 10 .8

T1/T 2 = 17.1 X 106

This polarizer will be used in measuring the polarizers produced by thin film

methods.
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Section 3 Development of Polarizing Metal Films

The technical objective of the effort reported in Section 3 is development of a

technique for fabricating metal films made up of metal particles having a correct

shape factor and density for polarizing light in the visible spectral region.

Specifically these films must be developed for use in high performance

polarizing filters peaked at 589 nm. Having presented an analytical discussion of

such films in Section 1, it must be pointed out that the experimental work

predated the analytical work by 18 months and followed a "cut and try method"

for evaluating a wide variety of experimental approaches for producing visible

polarizing metal thin films of silver.

The starting point was a know deposition technique for producing a wide-band

polarizing silver film covering the spectral range from 780 nm to 1250 nm with

peak resonance absorption at 1050 nm. The technical approach described in

Section 3 describes variations in amount of silver, directional sequence for

deposition, variation of deposition parameters and substrate condition. All

variations were evaluated for effectiveness in improving the films polarization

characteristics at 589 nm. Our initial intention to investigate other metals besides

silver was deferred at first and later abandoned because of continued success

with silver.

The technique used to deposit silver is a grazing angle incidence deposition

using standard evaporative vacuum deposition methods. The three essential

innovations for producing polarizing films at 589 nm are:

(1.) Selection of the correct amount of silver.

(2.)

(3.)

Correct division of the silver into alternating directions of

depositions.

Preparation of the substrate with a precoat of silver which is heat

treated to shape the particles.
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The experimental work leading to the development of the polarizing thin film for

visible light will be reviewed in the following sections.

Section 3.1 Shaping of Metal Particles

Vacuum Deposition System and Fixtures

A vacuum system with a six-inch oil diffusion pump, cryogenic trap and 18 inch

bell jar was installed in our laboratory. Silver was evaporated from a graphite

boat with dc current controlled by a Variac. Silver was purchased in the form of a

ribbon with a rectangular cross-section with sides of 0.25 mm and 1.0 mm. For

convenience, the silver length was indicated in inches of ribbon. Silver was

deposited at a vacuum approaching 10 -6 torr. Reproducible results were

regularly achieved by specifying silver ribbon length and Variac setting for

deposition.

The schematic representation of the vacuum are shown in Figure 3.1-1. The

substrates were 25 mm diameter polished discs of BK-7 glass. Each disc was

mounted to a disc carrier which could be placed in the positioning fixture in the

vacuum chamber. A fixture was built so that 14 discs at a time could be mounted

in the chamber. A precision adjustment of each of the 14 stations could position

each disc so that the normal to the surface was normal to the incident beam of

silver. The angle between the normal to the glass surface and the incident beam

of silver could be varied between 85 ° and 89 ° . An optical indicator was used to

position the tilt of a disc at positions of 0, + 11/2, +1 around a standard position

near grazing angle.

Our standard experimental procedure is to divide the length of silver into a even

number of segments and alternate the direction of deposition on the disc.

Position 1 is the position defined by the direction of the beam onto the disc

surface for the first coating. Position 2 is defined by rotating the disc 180 ° about

the normal to the disc extended from the center of the disc. The deposition in

Position 2 is in a direction essentially opposite that of Position 1. It is implied

that, when a division of silver is made into an even number of segments, the
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segments will be deposited in a sequence alternating between Position 1 and

Position 2 unless otherwise indicated.

Silver Films: Optical and Structural Features

The experimental results reported in this section will summarize the optical

characteristics and structural characteristics of the basic silver films. The optical

characteristics are the measured principle transmittance k 1 and k 2 recorded using

the polarizing spectrophotometer described in Section 2.1. Although scores of

discs were coated during the evaporation process, the results can be summarized

by the typical TEM pictures and principle transmittances for 4, 6, 8 and 10

segment depositions.

A. 4 Segment- 21.0 inches Ag

A typical 4 segment transmittance plot is shown in Figure 3.1-2. A TEM picture is

shown in Figure 3.2-3. Many of the prominent spheroids have a length of the

order of 0.5 micron. Peak absorption occurs at 700 nm.

B. 6 Segment - 21.0 inches Ag

A typical 6 segment transmittance plot is shown in Figure 3.1-4. A contrast of 46

is achieved at the 600 nm peak. A TEM picture of a 6 segment film is shown in

Figure 3.1-5. A typical length a silver prolate spheroid is 0.15 micron.

C. 8 Segment - 26.4 inches Ag

A typical 8 segment transmittance plot is shown in Figure 3.1-6. A contrast of 122

is achieved at 600 nm while the peak resonance absorption occurs at 575 nm with

a contrast of 144. A SEM picture of a very poor quality is shown in Figure 3.1-7.

A TEM micrograph of the same sample is shown after 6 of the 8 segments are

deposited in Figure 3.1-8.
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POLAHIZEI:I DATA

0ate:09/24/90 _ Job Number: 8801

A: 4.5 inch Ag, 4 shots D:
2.5 rnin at 110, Tilt -1

B: Plain Disc E:

C: F:

Run Number:

Disk Number: 1

K1/K2

150

140

130"

120

110

IO0

gO

80

70

60

50

40

30

20

10

500

6 --

4

2 -

I I ! I

550 575 6OO 625

KI= K2=+

.......o
_-o-------------

500

I

550

Figure 3.1-2

I

575 600 625

Transmittances and contrast for 4 segment film
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Figure 3.1-3 TEM image of 4 segment film
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POLARIZER DATA

Date: 07/09/90 -_ Job Number: 8801

A: 6 shots, 3.3" AG each D:

2.5 minutes at 110

B: E:Evap. Direction Alternation

AB AB AB

C: Tilt:-1 F.U. F:

Run Number: 2

Disk Number: 2

50

45

40

35

.30

2,5

20

],5

10

5

KI/K2

I ! ! I !

450 ,500 550 600 650 700

KI= L._ K2=+

6 --

5

4

.3

" 1 t I I

I I I 1 I

4,.50 500

Figure 3.1-4

550 600 650 7O0

Transmittances and contrast for 6 segment film
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Figure 3.1-5 TEM image of 6 segment film
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POLARIZER DATA

Date: 08/08/90 Job Number: 8801

A: 3.3 Ag x8 (AB)4 D:
2.5 rain at 110

B: Tilt: -0- E:

C: Plain discs (10 ea.) F:

Run Number: 1

Disk Number: 5

KI/K2

150

140 --

130 --

120 --

110 --

100 --

gO --

80 -

70 -

60 -

50 -

I
40

500

7

! I ; I

525 550 575 600 70

KI=O K2=+

5

4

3

2

0 I I I I
500 525 550 575 600

/
Z

7¢

Figure 3.1-6 Transmittances and contrast for 8 segment film
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Figure 3.1-7 SEM image of 8 segment film
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Figure 3.1-8 TEM image of 8 segment film after 6 segments
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D. 10 Segment - 26.0 inches Ag

A typical 10 segment transmittance plot is shown in Figure 3.1-9. Contrast

greater than 61 is achieved at both 550 nm and 575 nm. It is apparent that the

resonance peak is shifted to even shorter wavelength in the visible spectrum. No

electron microscopy was performed on the 10 segment sample.

E. Summary

It is evident from the transmittance data that the increase in the number of

segments increases the density of silver spheroids, decreases the size of the

spheroids and increases the ratio b/a of typical prolate spheroids. All effects

contribute to shifting the resonance peak to shorter wavelength according to the

analytical description of Section 1. It is also apparent that the resonance peaks are

very broad. The electron micrographs reveal a variety of particle shapes and

sizes which serves to decrease k 1 and broaden the peak absorption of k2. These

results clearly indicate the potential for fabricating effective polarizing films for

the visible spectral region.

Section 3.2 Substrate Surfaces

The technical objective of this task was investigation of methods of coating or

preparing the surface prior to silver deposition in order to improve polarization

characteristics of the silver film. A variety of technical approaches were

investigated with one very significant success. This technique consisted of

depositing a light silver film as a precoat followed by heat treating in a vacuum

prior to depositing the multisegment silver film in the normal fashion. This

technique was incorporated in the film fabrication technique which produced

our best polarizing films.

At the start of the program the standard substrate was a 25 mm d_ameter disc of

Coming 7059 glass, a low sodium glass which is drawn rather than polished. A

change was made to 25 mm diameter disc of BK-7 glass which was ground and

polished. The BK-7 glass gave improved and more reproducible results.
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POLARIZER DATA

Date: 07/19/90 Job Number: 8801

A: AG 2.6" x 10 D: Tilt: -1

2.5 minutes at 110

B: Deposit alternate: (AB)5 E:

C: Plain disks, 6 F:

Run Number: 1

Disk Number: 1

KI/K2

65

6o

55

5o

4..5

4.0

3.5

,.3O

25

6

5

4

3

C
! !

450 500 550

! f ! !

575 600 650 700

KI = [] K2=+

t I "I" ' '! • I

450 ,500

Figure 3.1-9

._5o _75 _oo _5o 700

Transmittances and contrast for 10 segment film
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A second part of the effort was investigation of the effects of precoating the BK-7

discs. A sputter deposition machine was used to coat the discs with Teflon, SiO2,

MgF2, and SnO. No improvements were observed in the performance of films

deposited on these coated substrates. A third technique investigated under this

task was the effect of sputter etch of the silver films. This appeared to have the

same effect as heating and did not improve polarization of the film.

Silver Precoat and Heating

The investigation of silver precoat began with observations of silver deposited on

glass discs without grazing incidence. The silver particles are essentially

spherical. The discs were placed on the bottom of the vacuum system and

precoated with silver which was vaporized by the heated crucible and cooled by

multiple collisions of the vapor within the vacuum chamber while normal

deposition is in progress. This cooling process was termed "blow by". These

"slow" atoms were deposited as a precoat on the disc. Although theory specifies

the particle dimensions for desired polarization parameters, it does not dictate

the deposition condition. The effect on the polarizer parameter due to deposition

condition must be determined experimentally. We evaporated 3.3 inches of silver

from the crucible to create the precoat on the disc. The disc rested on the bottom

plate in the vacuum chamber. Only silver atom cooled by scattering deposited on

the glass disc.

The disc was next heated by the hot crucible for 2.5 minutes. The structure of the

precoat silver particles is shown in Figure 3.2-1. The particles are very small, but

their average diameter and distribution can be determined by count and

measurement. The silver deposition for the polarizing particles on the disc was

done by 8 deposits of 3.3 inches of silver strip. The evaporation direction was

alternated 180 ° for each deposit. The crucible was heated by the variac at 110

VAC for 2.5 minutes. The disc tilt was -1. The silver deposited on this precoated

heated disc is shown in Figure 3.2-2. The shape and size may be determined by

count and measurement since 2.0 inches on the micrograph covers 1.0 micron.
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Figure 3.2-1 Blowby Silver Film

Figure 3.2-2 Ag deposited on heat treated precoat.
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The Polarizer data is given in Figure 3.2-3. It shows a marked change in kl/k 2

being 1600 at 500 nm. Also the curve is sharp and extends from 450 to 550 nm,

trailing to about 100 at 700 nm. The polarizer characteristics can be altered

radically by changing the deposition conditions. The selection of other conditions

are a continuing challenge to the imagination, ingenuity, and trial and error of

the experimenters.

The SEM photo micrograph in Figure 3.2-4 shows the appearance of the silver

fibers when 4 inches of Ag is deposited in 1 shot at a tilt angle of -1 units. The

fibers are not symmetrical, are elongated and show a range in size distribution. A

second SEM photo micrograph shown in Figure 3.2-5 shows the shape of the

particles after these Ag coated glass substrates were heated in a vacuum at a

distance of 2.5 inches from the graphite deposition crucible heated by a current

using a Variac at 110 VAC for a period of 2.5 minutes. The Ag particles have

coalesced into larger particles whose size distribution is more uniform. The space

between particles has been cleared of small particles. This leaves more clear glass

exposed, thereby permitting a larger value for k I after the final silver has been

deposited. This effect was investigated for a number of deposition conditions as

a result the precoat and preheat step have become an important step in the

polarizer fabrication. The precoated preheated discs were placed in the next

process step where 4 shots each of 4.25 inches of silver strip were deposited on

these discs at a tilt angle of -1. The discs were rotated 180 ° between shots to

produce particles whose shapes were symmetrical about their centers. This is

shown in the SEM photo micrograph in Figure 3.2-6. There is a small amount of

small particle deposition in the area between the optically polarizing particles.

These small particles do not contribute to the polarizer performance but may act

adversely by reducing k I and increasing k 2. A method for their elimination has

not been found.

9o



POLARIZER DATA

Date: 07/11/90

A:

---Job Number: 8801

Ag 3.3" x 8 D:

2.5 minutes at 110

B: Evap. Direction Alternation E:

A B (4 times)

C: 06-18-90 Blow by, 3.3" Ag F;

Bottom plate, heated 2.5 minutes

v Run Number: 1

Disk Number: 10

Tilt -- -1

o

1.6

1.5

1,4

1.3

1.2

1,1

1
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Figure 3.2-3
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Figure 3.2-4

Figure 3.2-5
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Figure 3.2-6
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Polarizer Performance

Figure 3.2-7 dated 09-09-90 give the kl, k2, and kl/k 2 values for the following

deposition condition:

Variac power 110 VAC, 3

Precoat: 2 inches Ag, Tilt (-1)

Heat: Distance 2.5 inches, crucible

minutes

Ag Deposition: Ag 16 inches, 4 shots, direction orientation

alternated 180 °, deposition time each 2.5 minutes, crucible

Variac power 110 VAC, disc tilt -1.

Figure 3.2-7 shows variation of k 1, k2, and kl/k 2 with wavelength. Peak kl/k 2 of

146 occurs at 600 nm. The values drop both directions from the peaks. The

spectral range was 500 to 700 nm. The effect on the kl, k2, kl/k2 values of the

deposition parameters were studied over a wide range, in the search for

conditions that would give high kl/k 2 and k I values at 600 nm.

Section 3.3 Materials for Metal Particles

Our technical goal was identification of the metal most likely to form a film with

polarization characteristics which meet the filter contrast goal of 105 or greater.

Our initial theoretical investigations predicted in Section 1 that silver would

meet our requirements. It was not necessary to initiate studies of other materials.

Our preliminary investigation indicated that gold and lead had strong plasmon

resonances which would lead to a polarization effect for spheroidal particles. In

addition, we were prepared to investigate films of A1, Cr, Pt, Ta and W at the

University of Central Florida. This did not prove necessary since we were able to

validate the theoretical predictions for silver. If investigations of other materials

had been required, the work would not have been performed at UCF as

proposed but would have been mover to another laboratory because of UCF's

inability to satisfy their contractual requirements on their proposed electron

microscopy tasks.
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POLARIZER DATA
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Section 4 Multilayer Film Methods

In section 4 we report efforts to develop multiple layers of the metal thin film

structure composed of silver prolate spheroids. The technical objective can be

clearly stated based on the theoretical analysis of Section 1. Three requirements

for a high performance polarizer consisting of an array of silver prolate

spheroids are:

, The number of particles in the optical path must be large enough

to produce a significant absorption cross-section.

. The volume of the particles must be small enough to prevent

excessive scattering (d < 100 nm).

, The spacing between particles must be at least 3 radii of a sphere

of equivalent particle volume.

The conceptual design solution is to space the particles at distances which satisfy

condition 3. Adjust the particle size to meet condition 2. And finally, add layers

to the film until the desired number of particles is achieved to produce effective

polarization.

We will report three approaches to spacing the particles by multilayer spacing.

The first approach to be described in Section 4.1 proposes the use of a polarizing

glass, designated Polacor by Corning, as the substrate. The second approach

discussed in Section 4.2, evaluates use of a layer of transparent adhesive between

layers of the silver films. The third approach, discussed in Section 4.3, proposes

the use of an evaporatively deposited transparent layer to separate metal films.

In attempting to experimentally simulate this third approach, an effective

technique was developed for depositing multilayer silver films on a single

substrate and achieving contrast in excess of 40,000. We will discuss the

experiment and the outstanding results.
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Section 4.1 Polarizing Substrates

Our first approach to fabricating a multilayer polarizer calls for use of a substrate

of polarizing glass manufactured under the trademark Polacor by Coming. The

design approach called for aligning the polarization axis of the deposited silver

film with the polarization axis of the Polacor substrate. The substrate would be

axially aligned with the deposition direction and, therefore, the axis of the silver

film. The polarization effect in Polacor glass is produced by silver prolate

spheroids disbursed in a glass matrix.

Today commercially available Polacor glass has absorption peaks only in the

near-infrared spectral region. Coming agreed to make available two samples of

experimental Polacor glass which has a resonance absorption peak near 633 nm.

We have evaluated the principle transmittances and contrast of these two

Polacor samples which we numbered #15 and #16. In Section 5.1 we report

performance results for a multilayer design evaluation using the better Polacor

sample with silver film samples. We did not attempt to go beyond this point and

deposit silver films directily on the Polacor substrate because we were unable to

obtain by purchase Polacor samples peaked near 600 nm in the 25 mm diameter

required for our filter design. We were regretfully informed by Corning that no

new Polacor glass was available in any size for loan or purchase that peaked in

the visible spectral region.

Polacor Polarization Characteristics

Two polarizing glass discs were received from Coming which were numbered

#702M37015 and #702M37016. Both were 15 mm in diameter and were

designated for use at 633 nm. The principle transmittances and contrast for each

disc were measured using the polarizing spectrometer described in Section 2.1

and are shown in Figures 4.1-1 and 4.1-2. Although designated for use at 633 nm,

the two filters were found to have contrast of 718 and 942 respectively at 590.
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POLARIZER DATA
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Section 4.2 Chemical Bonding

One approach to achieving the high density of particles required for high

contrast is separation of multiple silver films with a transparent chemical

adhesive. As demonstrated in Section 1, the resonance absorption peak for a

particle in air (refractive index No = 1.0) is shifted by a factor of N0/N2 where N2

is the refractive index of the second higher index medium. The design

implication is that the b/a ratio for a material with refractive index 1.5 must be

twice that for refractive index 1.0 when the absorption peak is at 600 nm. We

were able to demonstrate the bonding with two discs, one coated with a silver

film which has a resonance absorption peak near 600 nm and the other a plain

disc. The Norlin Optical Cement used as an adhesive has a refractive index of 1.5.

The design concept calls for depositing a silver polarizing film on a transparent

substrate, covering the film with a higher index transparent optical coating, and

depositing a second silver film on the flat surface of the transparent surface, and

repeating the process until a number of silver films are deposited sufficient to

achieve the desired density of silver particles. This process requires that the

transparent chemical adhesive be formed into an optically flat layer. Two

experimental methods were evaluated for producing a flat layer of adhesive.

First, an adhesive was spread on a glass disc coated with a light layer of Teflon.

The disc was pressed against the silver film and UV cured. It was difficult to

separate the disc without fracturing the discs. However, patches of adhesive

coated silver film were observed which indicates that this "lift off' method has

promise. In the second approach the adhesive was spread on a smooth disc of

Teflon material, pressed against a silver film and UV cured. Again the lift off was

patchy, but good areas could be observed. If Teflon surfaces polished to optical

flatness were used, the method probably would work.

The effect of the high refractive index adhesive can be observed by measuring

the principle transmittances and contrast of silver film, bonding a clear disc to

the film, and remeasuring. An example of a near-infrared polarizing film is

shown in Figure 4.2-1. By cementing a clear disc to the film with an adhesive

having a refractive index of 1.5, the point of peak contrast is shifted form 900 nm

to 1350 nm as shown in Figure 4.2-2. The effect of directly bonding two films
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with resonance peaks in the visible region can be illustrated using two films

whose optical characteristics are shown in Figure 4.2-3 and Figure 4.2-4. The

resulting optical characteristics are shown in Figure 4.2-5.

It can be concluded that there is a good probability that multilayer films can be

fabricated using chemical adhesive/lift off techniques. A key technical issue is

formation of films composed of particles whose resonance absorption peaks at

600 nm when immersed in a material with refractive index 1.5.

Section 4.3 Evaporatively Deposited Bonding Layer

This approach to multilayer films calls for depositing a silver film on a glass

substrate and over-coating the metal film with a layer of smooth, evaporatively

deposited transparent material such as MgF2 or SiO2. A second layer of metal

would be applied on the surface of the transparent layer. This process would

continue until the desired density of metal particles is achieved. A number of

attempts were made to over coat a polarizing silver film with SiO2. We were

unable to gain control of the temperature and deposition rate, and the results

were inconclusive. Refinement of this method is a key technical object for the

fabrication of robust, durable silver film polarizers.

A simple evaluation of the layer spacing concept resulted in a significant

improvement in film fabrication for 600 nm light. At the end of the program the

deposition process has evolved to the concept of a film consisting of eight 4 inch

segments of Ag deposited on an annealed precoat of two 2 inch Ag segments.

Transmittances and contrast for a typical film is shown in Figure 4.3-1.

Polarization at 600 nm is 2933. In order to demonstrate the concept of a high

index separation layer, we applied an annealed precoat to both sides of a single

BK-7 glass blank and applied four 4 inch segments to each side of a disc. The

results, shown in Figure 4.3-2, indicate a peak contrast of 11,250 at 650 nm on a

single disc and a contrast of 9750 at 600 nm. This represents the "best effort" of

the program for a single disc and indicates the potential of separating particles

with high index layers as spacing.
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POLARIZER DATA
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Section 5 Fabrication of Polarizing Filters

The technical objective of Task 5 was evaluation of the thin film polarizer

technology as it developed throughout the program. This was to be

accomplished by fabrication of a "best effort" thin film polarizer at six month

intervals over the 24 month program. Since technical advances could not be

scheduled, we report here the more significant polarizer fabrications and

evaluations which took place immediately following the availability of an

improved thin film technology or component. We will describe the performance

of polarizers at 594 nm determined with the test apparatus described in Section

2.3. In Section 5.1, the performance results for a multilayer polarizer concept

using polarizing glass substrates will be described. In Section 5.2, the

performance of the best polarizer components using all multilayer silver films

will be described. Because of the success with silver films, no other metals for

polarizing metal films were considered for polarizer fabrication.

Finally, the design, assembly and evaluationof two "best effort" polarizing filters

are described in Section 5.4. Two units were assembled in a filter package and

achieved contrast of 105 at 594 nm. These filters use two multilayer silver

polarizing discs to achieve this value. There two filters will be delivered to JPL

with the Final Report.

Section 5.1 Polarizing Glass Substrate Polarizer

The technical goal of Section 5.1 was evaluation of a "hybrid" polarizer composed

of a polarizing glass filter supplied by Corning and silver film polarizer

developed at Polatomic. The design concept was to utilize the Polacor disc,

described in Section 4.1, as a substrate for silver film deposition. Unfortunately

this was not possible since Coming supplied only two small samples for

evaluation, but no further samplers of polarizing glass for 589 nm was made

available for purchase or evaluation. We were able to evaluate several

combinations of Polacor glass/silver film elements using the laser polarization

checker described in Section 2.3 and validate the design concept. The optical

bench holders were used to place the polarizing optical elements in series and
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rotate the parts to optimum orientation. Contrast in excess of 200,000 were

obtained with one of these hybrid combinations.

COMPONENTS

A. Coming #15 polarizer disc (Polacor)

B° Silver film discs in set # 01-31-91 (Single side deposition)

1. Fabrication

a.) Precoat deposit: Ag 2 in. + 2 in. counter deposited at 2 1/2

minutes with heater Variac at 110 VAC, Tilt -1.

b.) Precoated discs heated in vacuum by placing discs in holder

21/2 inches from graphite crucible heated for 3 minutes with

heater Variac at 110 VAC.

c.) Ag deposit, 2 1/2 minutes at crucible Variac at 108 VAC.

Deposits were alternated in direction incident on disc by disc

rotation of 180 ° .

Ag (inches) =

3 1/2 + 3 1/2 +4 1/2 +4 1/2 +3 1/2 +3 1/2 + 4 1/2 + 4 1/2

for discs 1-4 tilt was -1/2

for discs 5-9 tilt was -1

for discs 10-14 tilt was 0.

d.) All coatings deposited on one side of disc

Polarizer Measurements

1. Coming #15

I0 kl k2 kl/k2

100 68 0.034 2000
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2. Disc: 01-31-91 #14

Light enters glass side

100 48 .058

Light enters Ag side

100 48 .054

828

889

3. Disc: 01-31-91 #13

Light enters glass side

100 48 .048

Light enters Ag side

100 48 .038

1000

1263

4. Disc:01-31-91(#13+#14)

100 22 .0017 12,941

5. Coming 15 + 01-31-91 (#13+#14)

100 16 .00009 178,000

6. D_c:01-31-91 #6,1ightentersAg side

100 40 .0048 8333

7. Coming #15 + 01-31-91 #6

100 28 .00024 116,700

8. #01-31-91 #4

100 39 .0039 10,000

9. Coming #15 + 01-31-91 #6 + 01-31-91 #4

100 10.2 .00004 255,000
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Section 5.2 Advanced Multilayer Polarizing Filter

The technical goal of Section 5.2 was evaluation of a polarizer design consisting

exclusively of silver film polarizing discs. We selected the best results for the case

where silver films were applied to a single side of the glass discs and the case

where silver films were applied to both sides of the glass discs. The laser

polarization checker was used to position the discs and orient them for optimum

performance. Using silver films exclusively, we were able to achieve contrast in

excess of 135,000.

COMPONENTS

A. Silver Film Discs in Set #03-07-91 (double side deposition)

The objective was to deposit the polarizing film on both sides of a single disc.

This permitted the Ag material to be separated by glass having a refractive index

of 1.5 instead of 1.0 that of air.

The Ag deposition on each side was as follows:

a.) Ag precoat

Ag: 2 in. + 2 in. with crucible Variac at 110 Vac for 2 1/2 minutes

b.) Pre-heat

After both sides were coated with 2 + 2 inch Ag, discs were

heated for 3 minutes in vacuum by crucible heated with Variac

at 110 VAC.

c.) Ag deposit

Each side was coated with 4 inches Ag for 4 shots. Disc was

rotated 180 ° between shots.
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Polarization Measurement

1. Disc 03-07-91 #1

Io kl k2 kl/k2

100 39.5 0.00066 59,800

2. Coming #15 + 03-07-91 #1

100 27 .00008 337_00

3. Disc 03-07-91 #2

100 42 .001 42,000

4. D_c 03-07-91 #4

100 38.2 .00096 39,800

5. Disc 03-07-91 #4 + 03-07-91 #2

100 16 .000149 10_400

Note that kl/k2 = 107,400 was achieved only with the two 03-07-91 Polatomic

discs.

B. Silver film discs set #03-14-91 (single side deposition)

Discs coated with Ag on both sides presented handling problems during

fabrication. The objective for these discs was to deposit the Ag on one side only

and then bonding the two discs with Norland Optical Adhesive (U.V. #61)

thereby eliminating the reflection from two surfaces.

a.) Precoat: Ag: 2 in + 2 in on one side

b.) Heat: 3 min at 110 VAC

c.) Ag coat: Ag: 4 in two shots in reverse order
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Polarization Measurements

#03-14-91 (#11 + #12) U.V. Bonded

Io kl k2 k /k2

100 56 .15 373

#03-14-91 (#2 + #8) U.V. Bonded

100 48 .15 320

#03-14-91:(#2+#8 U.V.Bonded)+(#11+#12 U.V. Bonded)

100 27 .0003 90,000

The k 1/k 2 > 100,000 was not reached.

C. Silver film disc Set #03-12-91 (single side deposition)

1.) Precoat: Ag 2 in + 2 in one side

2.) Heated 3 minutes at 110 VAC

3.) Coated one side: Ag: 4 in long strip, deposited 8 times in alternate

direction by rotating discs 180 ° between shots.

4.) Polarization Measurements:

03-12-91 #4

100 31 .00095 32,600

03-12-91 #4 + 03-14-91 (#11+#12 U.V. Bonded)

100 19 .00014 135,700

Note that only three silver film discs were used to give kl/k2 = 135,700.

Section 5.3 Advanced Concepts Polarizing Filter

In the event that silver films were unable to achieve the required polarization

performance, other types of metal thin films were to be investigated under the

Phase II plan. Because of the success achieved with silver films at 590 nm, our

technical effort was concentrated on silver and no other materials were required

to achieve the contrast goal of 105 .
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Section 5.4 State-of-the-Art Metal Thin Film Polarizers

The technical objective of this section is demonstration of the silver film polarizer

design and fabrication technology for fabricating and assembling two polarizing

filters. These two filters will be delivered to JPL for inspection along with the

Final Report. This step required design and fabrication of a unit to hold the

individual discs and permit alignment of the discs. The discs were difficult to

align and mount in the holder, however contrast of 100,000 and 97,000 were

achieved with the final filters.

A new set of discs were fabricated for the final assembly. The deposition

conditions were:

Precoat: Ag 2 inches two shots in alternate directions. Discs were

coated on both sides.

Heat: Discs were heated in the vacuum at a distance of 2.5 inches

from the crucible (heated by 110 VAC).

Silver Deposits: 4 inches of Ag strip shot 4 times in alternate

directions were deposited in each side of the disc. 14 discs

were prepared. The kl/k 2 ratio is 5000 or better on the discs

in this set.

Disc holder

Two discs were used per polarizer. Each disc (1 inch OD) is bonded into a lipped

ring with Norland Optical Adhesive (UV 61). The outer edge of the disc is wiped

to remove the silver at a distance of 1/8 inch on the radius. This prevents the

bonding fluid from creeping and destroying the silver performance. An outer

holder is black anodized aluminum having an inside diameter large enough to

hold the ring with the polarizer disc. An axial section of the holder is illustrated

in Figure 5.4-1.

A ring-mounted polarizer is placed on one side of the partition ring in the disc

holder. The ring is bonded to the holder with 24 hour curing Epoxy. The disc
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Figure 5.4-1 Disc Holder Cross-section
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k_

holder is clamped into the mount which is a part of the laser polarizer measuring

system described in Section 2.3. The disc holder is rotated to the correct k 2

orientation. The second disc with polarizer is mounted into the other half of the

disc holder, and again bonded loosely with the 24 hour curing Epoxy. Notches

were made on the disc to permit its rotation with respect to the disc in the first

half of the holder to give the lowest k 2 reading obtainable. This k 2 reading was

obtained as well as the k I reading. If the kl/k 2 was less than 100,000 the disc were

replaced with another set until a kl/k 2 reading approached 100,000. This was the

most difficult and sensitive step in the polarizing filter assembly. It was observed

that the silver particles did produce crosspolarization scattering. The detector

was located lm from the filter in order to eliminate this effect. Reduction in

particle size would reduce scattering to a negligible level, however this

improvement was beyond the scope of the present program.

When the polarization ratio remained constant over a few days, the assembly

was completed. The completion step was to seal both halves of the disc holder

with metal mounted antireflective coated glass disc using epoxy.

Polarization Measurement

Two polarizing filters were assembled. Their polarization values were:

Filter k I k 2 kl/k 2

#1 22 .00022 100,000

#2 29 .00030 97,000

These two filters will be delivered to JPL with the final report. A final

measurement was made of the variation of transmittances with wavelength. The

polarizing spectrophotometer described in Section 2.1 was used for the

measurements. The variation of contrast with wavelength is shown in Figure 5.4-

2 for silver film filter #1.
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Figure 5.4-2 Dependence of contrast on wavelength
for silver film filter #1.
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Having achieved a contrast of 105, future polarizing filters could achieve even

higher contrast and larger kl if the following improvements were incorporated.

First, experience with assembly of the filter unit would lead to improved

methods for adjusting the orientation of films for optimum performance inside in

the final package. Second, smaller particles would reduce scattering.

Examination of a SEM micrograph of the film indicates that particle density is

approximately 50 per square micron with half of these in the equivalent diameter

range between 150 nm and 300 nm. A goal would be to increase density and

reduce volume.
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